Synaptic kainate receptors tune oriens-lacunosum moleculare interneurons to operate at theta frequency.
نویسندگان
چکیده
GABAergic interneurons of the hippocampus play an important role in the generation of behaviorally relevant network oscillations. Among this heterogeneous neuronal population, somatostatin (SOM)-positive oriens-lacunosum moleculare (O-LM) interneurons are remarkable because they are tuned to operate at theta frequencies (6-10 Hz) in vitro and in vivo. Recent studies show that a high proportion of glutamatergic synapses that impinge on O-LM interneurons are mediated by kainate receptors (KA-Rs). In the present study, we thus tested the hypothesis that KA-Rs transmit afferent inputs in O-LM neurons during synaptic stimulation at theta frequency. We combined multibeam two-photon calcium imaging in hippocampal slices from SOM-enhanced green fluorescent protein (EGFP) mice, to record the activity of SOM cells as well as hundreds of neurons simultaneously, and targeted electrophysiological recordings and morphological analysis to describe the morphofunctional features of particular cells. We report that EGFP-positive O-LM neurons are the only subtype of interneuron that reliably follows synaptic stimulation of the alveus in the theta frequency range. Electrophysiological recordings revealed the crucial contribution of KA-Rs to the firing activity and to the glutamatergic response to theta stimuli in O-LM cells compared with other cell types. The reliable activation of O-LM cells in the theta frequency range did not simply result from the longer kinetics of KA-R-mediated postsynaptic events (EPSP(KA)) but presumably from a specific interaction between EPSP(KA) and their intrinsic active membrane properties. Such preferential processing of excitatory inputs via KA-Rs by distally projecting GABAergic microcircuits could provide a key role in theta band frequency oscillations.
منابع مشابه
Role of ionotropic glutamate receptors in long-term potentiation in rat hippocampal CA1 oriens-lacunosum moleculare interneurons.
Some interneurons of the hippocampus exhibit NMDA receptor-independent long-term potentiation (LTP) that is induced by presynaptic glutamate release when the postsynaptic membrane potential is hyperpolarized. This "anti-Hebbian" form of LTP is prevented by postsynaptic depolarization or by blocking AMPA and kainate receptors. Although both AMPA and kainate receptors are expressed in hippocampal...
متن کاملNetwork models provide insights into how oriens–lacunosum-moleculare and bistratified cell interactions influence the power of local hippocampal CA1 theta oscillations
Hippocampal theta is a 4-12 Hz rhythm associated with episodic memory, and although it has been studied extensively, the cellular mechanisms underlying its generation are unclear. The complex interactions between different interneuron types, such as those between oriens-lacunosum-moleculare (OLM) interneurons and bistratified cells (BiCs), make their contribution to network rhythms difficult to...
متن کاملVariable kainate receptor distributions of oriens interneurons.
Interneuron kainate receptor (KAR) activation regulates normal network activity and modulates cell excitability. As a result, determining the subcellular distribution of KARs in a cell-specific manner is a necessary step toward understanding their role in network function. We have functionally mapped synaptic and extrasynaptic dendritic KARs on hippocampal oriens interneurons using local photol...
متن کاملOn the formation of gamma-coherent cell assemblies by oriens lacunosum-moleculare interneurons in the hippocampus.
Gamma frequency (30-80 Hz) network oscillations have been observed in the hippocampus during several behavioral paradigms in which they are often modulated by a theta frequency (4-12 Hz) oscillation. Interneurons of the hippocampus have been shown to be crucially involved in rhythms generation, and several subtypes with distinct anatomy and physiology have been described. In particular, the ori...
متن کاملIntrinsic theta-frequency membrane potential oscillations in hippocampal CA1 interneurons of stratum lacunosum-moleculare.
The ionic conductances underlying membrane potential oscillations of hippocampal CA1 interneurons located near the border between stratum lacunosum-moleculare and stratum radiatum (LM) were investigated using whole cell current-clamp recordings in rat hippocampal slices. At 22 degrees C, when LM cells were depolarized near spike threshold by current injection, 91% of cells displayed 2-5 Hz osci...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 27 36 شماره
صفحات -
تاریخ انتشار 2007